- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Gan, Qiaoqiang (2)
-
Singer, Matthew (2)
-
Zhang, Nan (2)
-
Zhou, Lyu (2)
-
Alowayed, Abdulmohsen (1)
-
Detchprohm, Theeradetch (1)
-
Dupuis, Russell D. (1)
-
Hu, Haifeng (1)
-
Li, Kuang-Hui (1)
-
Li, Kuang-hui (1)
-
Li, Kuang‐hui (1)
-
Li, Xiaohang (1)
-
Ooi, Boon S. (1)
-
Ooi, Boon_S (1)
-
Park, Young Jae (1)
-
Sun, Haiding (1)
-
Torres Castanedo, C. G. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Nan; Hu, Haifeng; Singer, Matthew; Li, Kuang‐hui; Zhou, Lyu; Ooi, Boon_S; Gan, Qiaoqiang (, Advanced Optical Materials)Abstract Metallic nanostructures with nanogap features can confine electromagnetic fields into extremely small volumes. In particular, as the gap size is scaled down to sub‐nanometer regime, the quantum effects for localized field enhancement reveal the ultimate capability for light–matter interaction. Although the enhancement factor approaching the quantum upper limit has been reported, the grand challenge for surface‐enhanced vibrational spectroscopic sensing remains in the inherent randomness, preventing uniformly distributed localized fields over large areas. Herein, a strategy to fabricate high‐density random metallic nanopatterns with accurately controlled nanogaps, defined by atomic‐layer‐deposition and self‐assembled‐monolayer processes, is reported. As the gap size approaches the quantum regime of ≈0.78 nm, its potential for quantitative sensing, based on a record‐high uniformity with the relative standard deviation of 4.3% over a large area of 22 mm × 60 mm, is demonstrated. This superior feature paves the way towards more affordable and quantitative sensing using quantum‐limit‐approaching nanogap structures.more » « less
-
Sun, Haiding; Park, Young Jae; Li, Kuang-Hui; Torres Castanedo, C. G.; Alowayed, Abdulmohsen; Detchprohm, Theeradetch; Dupuis, Russell D.; Li, Xiaohang (, Applied Physics Letters)
An official website of the United States government
